Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Stem Cell Rev Rep ; 19(8): 2612-2631, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37642899

RESUMEN

Injury to the peripheral nerve causes potential loss of sensory and motor functions, and peripheral nerve repair (PNR) remains a challenging endeavor. The current clinical methods of nerve repair, such as direct suture, autografts, and acellular nerve grafts (ANGs), exhibit their respective disadvantages like nerve tension, donor site morbidity, size mismatch, and immunogenicity. Even though commercially available nerve guidance conduits (NGCs) have demonstrated some clinical successes, the overall clinical outcome is still suboptimal, especially for nerve injuries with a large gap (≥ 3 cm) due to the lack of biologics. In the last two decades, the combination of advanced tissue engineering technologies, stem cell biology, and biomaterial science has significantly advanced the generation of a new generation of NGCs incorporated with biological factors or supportive cells, including mesenchymal stem cells (MSCs), which hold great promise to enhance peripheral nerve repair/regeneration (PNR). Orofacial MSCs are emerging as a unique source of MSCs for PNR due to their neural crest-origin and easy accessibility. In this narrative review, we have provided an update on the pathophysiology of peripheral nerve injury and the properties and biological functions of orofacial MSCs. Then we have highlighted the application of orofacial MSCs in tissue engineering nerve guidance for PNR in various preclinical models and the potential challenges and future directions in this field.


Asunto(s)
Células Madre Mesenquimatosas , Traumatismos de los Nervios Periféricos , Humanos , Traumatismos de los Nervios Periféricos/terapia , Ingeniería de Tejidos , Células Madre , Materiales Biocompatibles
2.
Cell Death Dis ; 14(8): 579, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37653021

RESUMEN

Eukaryotic initiation factor 5A2 (eIF5A2) is overexpressed in many types of cancer, and spermidine-mediated eIF5A hypusination (eIF5Ahpu) appears to be essential to most of eIF5A's biological functions, including its important role in regulating cancer cell proliferation, epithelial-mesenchymal transition (EMT), and cancer stem cell (CSC) properties as well as immune cell functions. Here we investigated the role of eIF5Ahpu in the growth of oral squamous cell carcinoma cells (OSCCs) and OSCC-induced polarization of M2-like tumor-associated macrophages (TAMs). TCGA dataset analysis revealed an overall upregulation in the mRNA expression of eIF5A2 and several key enzymes involved in polyamine (PA) metabolism in HNSCC, which was confirmed by Western blot and IHC studies. Blocking eIF5Ahpu by GC-7 but not the upstream key enzyme activities of PA metabolism, remarkably inhibited cell proliferation and the expression of EMT- and CSC-related genes in OSCC cells. In addition, blocking eIF5Ahpu robustly inhibited OSCC-induced M2-like TAM polarization in vitro. More Importantly, blocking eIF5Ahpu dramatically retarded tumor growth and infiltration/polarization of M2-like TAM in a syngeneic orthotopic murine tongue SCC model. Thus, eIF5Ahpu plays dual functions in regulating tumor cell growth and polarization of M2-TAMs in OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Neoplasias de la Lengua , Animales , Ratones , Neoplasias de la Boca/genética , Factores de Iniciación de Péptidos/genética , Neoplasias de la Lengua/genética , Macrófagos Asociados a Tumores , Humanos
4.
Artículo en Inglés | MEDLINE | ID: mdl-35813450

RESUMEN

Background and Objective: Oral and maxillofacial (OMF) defects caused by congenital conditions, injuries, ablative surgery for benign and malignant head & neck tumor, can often lead to OMF deformities and malfunctions in speech, mastication/chewing, and swallowing as well as have deleterious psychological effects and socioeconomic burdens to patients. Due to the unique complex 3D geometry of the head and neck region, reconstruction and rehabilitation of OMF defects remain a major challenge for OMF surgeons.The purpose of this narrative review is to update the information on the biological properties and functions of mesenchymal stem cells derived from various dental tissues (dental-MSCs) and their potential application in tissue engineering (TE) and regenerative reconstruction of OMF tissues. Methods: A data-based search was performed by using PubMed database whereby articles published between 2000 and 2021 in English were included in the search with the following key words: dental stem cells, OMF reconstruction, OMF TE and regeneration. Key Content and Findings: Currently, the advancement in stem cell biology, biomaterial science, and TE technology has demonstrated the significant potential application of stem cell-based therapy in regenerative reconstruction and rehabilitation of OMF defects. However, no stem cell-based product or device has been translated into clinical application to replace microsurgical free tissue transfer, the current mainstay of care in the reconstruction of OMF defects. Conclusions: Currently, microsurgical free tissue transfer remains the gold standard mainstay of care for the reconstruction of OMF defects due to their abundant blood supply and flexibility for transplantation. However, several major challenges, such as the limited availability, the requirement of a second surgery, donor site morbidity, and the risk of free flap failure, have promoted the development of novel approaches. Due to the advancement in stem cell biology, biomaterial science, and TE technology, stem cell-based regenerative therapy is emerging as a promising therapeutic approach for a variety of diseases, including regenerative reconstruction and rehabilitation of OMF defects. In this narrative review, we update on the characteristics and biological functions of mesenchymal stem cells derived from various dental tissues (dental-MSCs) and their released cell-free products, extracellular vesicles (EVs). We also highlighted their potential application in TE and regenerative reconstruction of OMF defects in animal models and clinical studies and the potential challenges in this field.

5.
Stem Cell Res Ther ; 13(1): 263, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725660

RESUMEN

BACKGROUND: Peripheral nerve injuries (PNIs) remain one of the great clinical challenges because of their considerable long-term disability potential. Postnatal neural crest-derived multipotent stem cells, including gingiva-derived mesenchymal stem cells (GMSCs), represent a promising source of seed cells for tissue engineering and regenerative therapy of various disorders, including PNIs. Here, we generated GMSC-repopulated nerve protectors and evaluated their therapeutic effects in a crush injury model of rat sciatic nerves. METHODS: GMSCs were mixed in methacrylated collagen and cultured for 48 h, allowing the conversion of GMSCs into Schwann-like cells (GiSCs). The phenotype of GiSCs was verified by fluorescence studies on the expression of Schwann cell markers. GMSCs encapsulated in the methacrylated 3D-collagen hydrogel were co-cultured with THP-1-derived macrophages, and the secretion of anti-inflammatory cytokine IL-10 or inflammatory cytokines TNF-α and IL-1ß in the supernatant was determined by ELISA. In addition, GMSCs mixed in the methacrylated collagen were filled into a nerve protector made from the decellularized small intestine submucosal extracellular matrix (SIS-ECM) and cultured for 24 h, allowing the generation of functionalized nerve protectors repopulated with GiSCs. We implanted the nerve protector to wrap the injury site of rat sciatic nerves and performed functional and histological assessments 4 weeks post-surgery. RESULTS: GMSCs encapsulated in the methacrylated 3D-collagen hydrogel were directly converted into Schwann-like cells (GiSCs) characterized by the expression of S-100ß, p75NTR, BDNF, and GDNF. In vitro, co-culture of GMSCs encapsulated in the 3D-collagen hydrogel with macrophages remarkably increased the secretion of IL-10, an anti-inflammatory cytokine characteristic of pro-regenerative (M2) macrophages, but robustly reduced LPS-stimulated secretion of TNF-1α and IL-1ß, two cytokines characteristic of pro-inflammatory (M1) macrophages. In addition, our results indicate that implantation of functionalized nerve protectors repopulated with GiSCs significantly accelerated functional recovery and axonal regeneration of crush-injured rat sciatic nerves accompanied by increased infiltration of pro-regenerative (M2) macrophages while a decreased infiltration of pro-inflammatory (M1) macrophages. CONCLUSIONS: Collectively, these findings suggest that Schwann-like cells converted from GMSCs represent a promising source of supportive cells for regenerative therapy of PNI through their dual functions, neurotrophic effects, and immunomodulation of pro-inflammatory (M1)/pro-regenerative (M2) macrophages.


Asunto(s)
Células Madre Mesenquimatosas , Traumatismos de los Nervios Periféricos , Animales , Colágeno/metabolismo , Humanos , Hidrogeles , Interleucina-10/metabolismo , Células Madre Mesenquimatosas/metabolismo , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/patología , Traumatismos de los Nervios Periféricos/terapia , Ratas , Células de Schwann/metabolismo , Nervio Ciático/patología
6.
NPJ Regen Med ; 6(1): 59, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34593823

RESUMEN

Achieving a satisfactory functional recovery after severe peripheral nerve injuries (PNI) remains one of the major clinical challenges despite advances in microsurgical techniques. Nerve autografting is currently the gold standard for the treatment of PNI, but there exist several major limitations. Accumulating evidence has shown that various types of nerve guidance conduits (NGCs) combined with post-natal stem cells as the supportive cells may represent a promising alternative to nerve autografts. In this study, gingiva-derived mesenchymal stem cells (GMSCs) under 3D-culture in soft collagen hydrogel showed significantly increased expression of a panel of genes related to development/differentiation of neural crest stem-like cells (NCSC) and/or Schwann cell precursor-like (SCP) cells and associated with NOTCH3 signaling pathway activation as compared to their 2D-cultured counterparts. The upregulation of NCSC-related genes induced by 3D-collagen hydrogel was abrogated by the presence of a specific NOTCH inhibitor. Further study showed that GMSCs encapsulated in 3D-collagen hydrogel were capable of transmigrating into multilayered extracellular matrix (ECM) wall of natural NGCs and integrating well with the aligned matrix structure, thus leading to biofabrication of functionalized NGCs. In vivo, implantation of functionalized NGCs laden with GMSC-derived NCSC/SCP-like cells (designated as GiSCs), significantly improved the functional recovery and axonal regeneration in the segmental facial nerve defect model in rats. Together, our study has identified an approach for rapid biofabrication of functionalized NGCs through harnessing 3D collagen hydrogel-directed conversion of GMSCs into GiSCs.

7.
Commun Biol ; 4(1): 879, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34267315

RESUMEN

The rostral migratory stream (RMS) facilitates neuroblast migration from the subventricular zone to the olfactory bulb throughout adulthood. Brain lesions attract neuroblast migration out of the RMS, but resultant regeneration is insufficient. Increasing neuroblast migration into lesions has improved recovery in rodent studies. We previously developed techniques for fabricating an astrocyte-based Tissue-Engineered RMS (TE-RMS) intended to redirect endogenous neuroblasts into distal brain lesions for sustained neuronal replacement. Here, we demonstrate that astrocyte-like-cells can be derived from adult human gingiva mesenchymal stem cells and used for TE-RMS fabrication. We report that key proteins enriched in the RMS are enriched in TE-RMSs. Furthermore, the human TE-RMS facilitates directed migration of immature neurons in vitro. Finally, human TE-RMSs implanted in athymic rat brains redirect migration of neuroblasts out of the endogenous RMS. By emulating the brain's most efficient means for directing neuroblast migration, the TE-RMS offers a promising new approach to neuroregenerative medicine.


Asunto(s)
Astrocitos/fisiología , Células-Madre Neurales/trasplante , Neuronas/fisiología , Ingeniería de Tejidos , Animales , Humanos , Masculino , Neurogénesis , Ratas , Ratas Desnudas
8.
Front Immunol ; 12: 667221, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33936109

RESUMEN

A unique subpopulation of mesenchymal stem cells (MSCs) has been isolated and characterized from human gingival tissues (GMSCs). Similar to MSCs derived from other sources of tissues, e.g. bone marrow, adipose or umbilical cord, GMSCs also possess multipotent differentiation capacities and potent immunomodulatory effects on both innate and adaptive immune cells through the secretion of various types of bioactive factors with immunosuppressive and anti-inflammatory functions. Uniquely, GMSCs are highly proliferative and have the propensity to differentiate into neural cell lineages due to the neural crest-origin. These properties have endowed GMSCs with potent regenerative and therapeutic potentials in various preclinical models of human disorders, particularly, some inflammatory and autoimmune diseases, skin diseases, oral and maxillofacial disorders, and peripheral nerve injuries. All types of cells release extracellular vesicles (EVs), including exosomes, that play critical roles in cell-cell communication through their cargos containing a variety of bioactive molecules, such as proteins, nucleic acids, and lipids. Like EVs released by other sources of MSCs, GMSC-derived EVs have been shown to possess similar biological functions and therapeutic effects on several preclinical diseases models as GMSCs, thus representing a promising cell-free platform for regenerative therapy. Taken together, due to the easily accessibility and less morbidity of harvesting gingival tissues as well as the potent immunomodulatory and anti-inflammatory functions, GMSCs represent a unique source of MSCs of a neural crest-origin for potential application in tissue engineering and regenerative therapy.


Asunto(s)
Encía/metabolismo , Células Madre Mesenquimatosas/metabolismo , Medicina Regenerativa , Ingeniería de Tejidos , Comunicación Celular , Diferenciación Celular , Células Cultivadas , Humanos , Inmunomodulación
9.
Stem Cells Int ; 2021: 8834590, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33505474

RESUMEN

Mesenchymal stem or stromal cells (MSCs) are nonhematopoietic postnatal stem cells with self-renewal, multipotent differentiation, and potent immunomodulatory and anti-inflammatory capabilities, thus playing an important role in tissue repair and regeneration. Numerous clinical and preclinical studies have demonstrated the potential application of MSCs in the treatment of tissue inflammation and immune diseases, including inflammatory skin diseases. Therefore, understanding the biological and immunological characteristics of MSCs is important to standardize and optimize MSC-based regenerative therapy. In this review, we highlight the mechanisms underlying MSC-mediated immunomodulation and tissue repair/regeneration and present the latest development of MSC-based clinical trials on cutaneous diseases.

10.
Acta Biomater ; 122: 306-324, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33359765

RESUMEN

Mesenchymal stem cell (MSC)-derived exosome plays a central role in the cell-free therapeutics involving MSCs and the contents can be customized under disease-associated microenvironments. However, optimal MSC-preconditioning to enhance its therapeutic potential is largely unknown. Here, we show that preconditioning of gingival tissue-derived MSCs (GMSCs) with tumor necrosis factor-alpha (TNF-α) is ideal for the treatment of periodontitis. TNF-α stimulation not only increased the amount of exosome secreted from GMSCs, but also enhanced the exosomal expression of CD73, thereby inducing anti-inflammatory M2 macrophage polarization. The effect of GMSC-derived exosomes on inflammatory bone loss were examined by ligature-induced periodontitis model in mice. Local injection of GMSC-derived exosomes significantly reduced periodontal bone resorption and the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, and these effects were further enhanced by preconditioning of GMSCs with TNF-α. Thus, GMSC-derived exosomes also exhibited anti-osteoclastogenic activity. Receptor activator of NF-κB ligand (RANKL) expression was regulated by Wnt5a in periodontal ligament cells (PDLCs), and exosomal miR-1260b was found to target Wnt5a-mediated RANKL pathway and inhibit its osteoclastogenic activity. These results indicate that significant ability of the TNF-α-preconditioned GMSC-derived exosomes to regulate inflammation and osteoclastogenesis paves the way for establishment of a therapeutic approach for periodontitis.


Asunto(s)
Pérdida de Hueso Alveolar , Exosomas , Animales , Encía , Humanos , Macrófagos , Ratones , Osteoclastos , Factor de Necrosis Tumoral alfa
11.
Front Bioeng Biotechnol ; 8: 580654, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330416

RESUMEN

Following peripheral nerve injury comprising a segmental defect, the extent of axon regeneration decreases precipitously with increasing gap length. Schwann cells play a key role in driving axon re-growth by forming aligned tubular guidance structures called bands of Büngner, which readily occurs in distal nerve segments as well as within autografts - currently the most reliable clinically-available bridging strategy. However, host Schwann cells generally fail to infiltrate large-gap acellular scaffolds, resulting in markedly inferior outcomes and motivating the development of next-generation bridging strategies capable of fully exploiting the inherent pro-regenerative capability of Schwann cells. We sought to create preformed, implantable Schwann cell-laden microtissue that emulates the anisotropic structure and function of naturally-occurring bands of Büngner. Accordingly, we developed a biofabrication scheme leveraging biomaterial-induced self-assembly of dissociated rat primary Schwann cells into dense, fiber-like three-dimensional bundles of Schwann cells and extracellular matrix within hydrogel micro-columns. This engineered microtissue was found to be biomimetic of morphological and phenotypic features of endogenous bands of Büngner, and also demonstrated 8 and 2× faster rates of axonal extension in vitro from primary rat spinal motor neurons and dorsal root ganglion sensory neurons, respectively, compared to 3D matrix-only controls or planar Schwann cells. To our knowledge, this is the first report of accelerated motor axon outgrowth using aligned Schwann cell constructs. For translational considerations, this microtissue was also fabricated using human gingiva-derived Schwann cells as an easily accessible autologous cell source. These results demonstrate the first tissue engineered bands of Büngner (TE-BoBs) comprised of dense three-dimensional bundles of longitudinally aligned Schwann cells that are readily scalable as implantable grafts to accelerate axon regeneration across long segmental nerve defects.

12.
Cell Death Dis ; 11(5): 338, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32382005

RESUMEN

Ameloblastoma (AM) is a benign but locally aggressive tumor with high recurrences. Currently, underlying pathophysiology remains elusive, and radical surgery remains the most definitive treatment with severe morbidities. We have recently reported that AM harbors a subpopulation of tumor epithelial stem-like cells (AM-EpiSCs). Herein, we explored whether LGR5+ epithelial cells in AM possess stem-like cell properties and their potential contribution to pathogenesis and recurrence of AM. We found that LGR5 and stem cell-related genes were co-expressed in a subpopulation of AM epithelial cells both in vivo and in vitro, which were enriched under 3D-spheroid culture. As compared to LGR5- counterparts, LGR5+ AM epithelial cells showed increased expression of various EMT- and stemness-related genes, and functionally, exhibited increased capacity to form 3D-spheroids and generate human tumor 3D organoids, which recapitulated the histopathologic features of distinct subtypes of solid AM, thus, contributing a useful human tumor platform for targeted therapeutic screening. Treatment with a selective BRAFV600E inhibitor, vemurafenib, unexpectedly enriched the subpopulation of LGR5+ AM-EpiSCs in tumor 3D organoids, which may have explained therapeutic resistances and recurrences. These findings suggest that LGR5+ AM-EpiSCs play a pivotal role in pathogenesis and progression of AM and targeted inhibition of both BRAF and LGR5 potentially serves a novel nonsurgical adjuvant therapeutic approach for this aggressively benign jaw tumor.


Asunto(s)
Ameloblastoma/metabolismo , Ameloblastoma/patología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Células Madre Neoplásicas/patología , Organoides/patología , Receptores Acoplados a Proteínas G/metabolismo , Animales , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Proliferación Celular , Autorrenovación de las Células , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Masculino , Ratones Desnudos , Células Madre Neoplásicas/metabolismo , Fenotipo , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Trombospondinas/metabolismo
13.
J Cancer ; 11(8): 2068-2079, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32127934

RESUMEN

Previous studies have implicated the important role of mesenchymal stem/stromal cells (MSCs) within tumor microenvironment (TME) in the pathogenesis and progression of nasopharyngeal carcinoma (NPC), but the potential mechanisms are still unclear. Herein, we showed that an elevated IL-6 level was positively correlated with elevated expression of CD73 in TME of NPC. NPC specimens with an IL-6highCD73high phenotype showed higher expression levels of gp80, gp130, p-STAT3, MMP-9 and α-SMA, and clinically, a poorer prognosis than those with an IL-6lowCD73low phenotype. We found that stimulation with conditioned media derived from IL-6 gene knocked out MSC (MSCIL6KO-CM) down-regulated the expression of CD73, IL-6, gp80, p-STAT3, and proliferative cell nuclear antigen (PCNA) in CNE-2 NPC cells. Meanwhile, NPC cells co-cultured with MSCIL6KO-CM were more sensitive to cisplatin than those co-cultured with MSC-CM. Additionally, MSC-derived IL-6 transcriptionally upregulated CD73 expression via activating STAT3 signaling pathway in NPC cells. In summary, our findings suggest that MSCs promote NPC progression and chemoresistance by upregulation of CD73 expression via activating STAT3 signaling pathway.

14.
Tissue Eng Part A ; 25(11-12): 887-900, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30311853

RESUMEN

IMPACT STATEMENT: Peripheral nerve injuries (PNIs) are common and debilitating, usually resulting in considerable long-term disability and remaining an unmet clinical need. Even though the combination of mesenchymal stem cells (MSCs) and the state-of-the-art tissue engineering technologies has shown promising therapeutic potentials for PNI, there is still not a single licensed stem cell-based product for peripheral nerve repair/regeneration. Emerging evidence indicates that MSC-derived extracellular vesicles (EVs) are comparably effective as MSCs in the therapy of a variety of disease models or pathological conditions. This report shows that local delivery of gingiva-derived mesenchymal stem cell (GMSC)-derived EVs could obviously promote axonal regeneration and functional recovery of injured mice sciatic nerves. Importantly, the findings suggest that GMSC-derived EVs promoted the expression of Schwann cell dedifferentiation/repair phenotype-related genes in vitro, particularly c-JUN, a key transcription factor that drives the activation of repair phenotype of Schwann cells during PNI and regeneration.


Asunto(s)
Vesículas Extracelulares/trasplante , Encía/metabolismo , Células Madre Mesenquimatosas/metabolismo , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos , Células de Schwann/metabolismo , Nervio Ciático , Animales , Movimiento Celular , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología , Femenino , Encía/patología , Células Madre Mesenquimatosas/patología , Ratones , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología , Traumatismos de los Nervios Periféricos/terapia , Ratas , Ratas Sprague-Dawley , Células de Schwann/patología , Nervio Ciático/lesiones , Nervio Ciático/fisiología
15.
J Transl Med ; 16(1): 284, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30326918

RESUMEN

BACKGROUND: Cigarette smoking (CS) triggers an intense and harmful inflammatory response in lungs mediated by alveolar and blood macrophages, monocytes, and neutrophils and is closely associated with prevalence of tuberculosis (TB). The risk of death in patients with long-term cigarette smoking-related pulmonary tuberculosis (LCS-PTB) is approximately 4.5 times higher than those with nonsmoking pulmonary tuberculosis (N-PTB). However, the mechanisms underlying the harmful inflammatory responses in the setting of LCS-PTB have not been well documented. METHODS: 28 cases LCS-PTB patients, 22 cases N-PTB patients and 20 cases healthy volunteers were enrolled in this study. Monocytes were isolated from peripheral blood mononuclear cells. Differentiated human MDM and U937 cell were prepared with M-CSF and PMA stimulation, respectively. The miR-196b-5p, STAT1, STAT3, STAT4, STAT5A, STAT5B, STAT6, SOCS1 and SOCS3 mRNA expression were detected by qRT-PCR. Western blot was performed according to SOCS1, SOCS3, and pSTAT3 expression. The mycobacterial uptake by MDMs from different groups of patients after Bacillus Calmette-Guérin (BCG) infection and agomir-196b-5p or antagomir-196b-5p transfection were used by flow cytometry analysis. Human IL-6, IL-10 and TNF-α levels on the plasma and cell culture supernatant samples were measured using ELISA. For dual-luciferase reporter assay, the SOCS3 3'-UTR segments, containing the binding elements of miR-196b-5p or its mutant versions were synthesized as sense and antisense linkers. RESULTS: In this study, we found that IL-6, TNF-α production, SOCS3 mRNA expression were downregulated, while miR-196b-5p and STAT3 mRNA expression were upregulated in monocytes from LCS-PTB patients as compared to N-PTB patients. Meanwhile, we demonstrated that miR-196b-5p could target SOCS3 and activate STAT3 signaling pathway, which may possibly contribute to attenuation of BCG uptake and decrease in IL-6 and TNF-α production in macrophages. CONCLUSIONS: Our findings revealed that CS exposure regulates inflammatory responses in monocyte/macrophages from LCS-PTB patients via upregulating miR-196b-5p, and further understanding of the specific role of miR-196b-5p in inflammatory responses mightfacilitate elucidating the pathogenesis of LCS-PTB, thus leading to the development of new therapeutic strategies for PTB patients with long-term cigarette smoking.


Asunto(s)
Fumar Cigarrillos/efectos adversos , Macrófagos/metabolismo , MicroARNs/genética , Mycobacterium bovis/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Tuberculosis Pulmonar/genética , Regulación hacia Arriba/genética , Adulto , Regulación hacia Abajo/genética , Femenino , Humanos , Interleucina-6/metabolismo , Masculino , MicroARNs/metabolismo , Monocitos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Transcripción STAT3/genética , Transducción de Señal , Proteína 3 Supresora de la Señalización de Citocinas/genética , Factores de Tiempo , Tuberculosis Pulmonar/sangre , Tuberculosis Pulmonar/microbiología , Factor de Necrosis Tumoral alfa/metabolismo , Células U937
16.
Cancer Med ; 7(7): 3057-3065, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29856138

RESUMEN

Photodynamic therapy (PDT) is a noninvasive, highly selective approach to the treatment of tumors. However, its therapeutic effect is limited by long-lasting skin phototoxicity. Therefore, to compromise this shortcoming, it is preferable to deliver photosensitizers selectively to tumor cells with the aid of antibodies specific against tumor-associated antigens. Cancer/testis antigens 83 (CT83), also called KK-LC-1 or CXorf61, recognized by cytotoxic T lymphocytes (CTL), has become a promising target for immunotherapy. Herein, we developed and characterized a novel mouse CT83 mAb 7G4 with a high affinity with Gallium (III) 5, 10, 15-tris (ethoxycarbonyl) corrole (1-Ga), a new and promising photosensitizer in PDT. The enzyme-linked immunosorbent assay (ELISA), flow cytometry and cytotoxicity activity assays revealed that 7G4-1-Ga was able to recognize human CT83 with high specificity. Furthermore, 7G4-1-Ga showed greater cytotoxicity to CT83-expressing human cancer cells in vitro than 1-Ga. These results suggest that the antibody-conjugated photosensitizer between anti-CT83 mAb and 1-Ga may have a good application in PDT, where the destruction of CT83-expressing tumor is required.

17.
Sci Rep ; 8(1): 6634, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29700345

RESUMEN

Despite the promising neuro-regenerative capacities of stem cells, there is currently no licensed stem cell-based product in the repair and regeneration of peripheral nerve injuries. Here, we explored the potential use of human gingiva-derived mesenchymal stem cells (GMSCs) as the only cellular component in 3D bio-printed scaffold-free neural constructs that were transplantable to bridge facial nerve defects in rats. We showed that GMSCs have the propensity to aggregate into compact 3D-spheroids that could produce their own matrix. When cultured under either 2D- or 3D-collagen scaffolds, GMSC spheroids were found to be more capable of differentiating into both neuronal and Schwann-like cells than their adherent counterparts. Using a scaffold-free 3D bio-printer system, nerve constructs were printed from GMSC spheroids in the absence of exogenous scaffolds and allowed to mature in a bioreactor. In vivo transplantation of the GMSC-laden nerve constructs promoted regeneration and functional recovery when used to bridge segmental defects in rat facial nerves. Our findings suggest that GMSCs represent an easily accessible source of MSCs for 3D bio-printing of scaffold-free nervous tissue constructs with promising potential application for repair and regeneration of peripheral nerve defects.


Asunto(s)
Nervio Facial , Encía/citología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Regeneración Nerviosa , Impresión Tridimensional , Andamios del Tejido , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Colágeno/metabolismo , Humanos , Inmunohistoquímica , Ratas , Andamios del Tejido/química
18.
Mol Neurobiol ; 55(8): 6965-6983, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29372546

RESUMEN

Non-genetic induction of somatic cells into neural crest stem-like cells (NCSCs) is promising for potential cell-based therapies for post-traumatic peripheral nerve regeneration. Here, we report that human gingiva-derived mesenchymal stem cells (GMSCs) could be reproducibly and readily induced into NCSCs via non-genetic approaches. Compared to parental GMSCs, induced NCSC population had increased expression in NCSC-related genes and displayed robust differentiation into neuronal and Schwann-like cells. Knockdown of the expression of Yes-associated protein 1 (YAP1), a critical mechanosensor and mechanotransducer, attenuated the expression of NCSC-related genes; specific blocking of RhoA/ROCK activity and non-muscle myosin II (NM II)-dependent contraction suppressed YAP1 and NCSC-related genes and concurrently abolished neural spheroid formation in NCSCs. Using a rat model of facial nerve defect, implantation of NCSC-laden nerve conduits promoted functional regeneration of the injured nerve. These promising findings demonstrate that induced NCSCs derived from GMSCs represent an easily accessible and promising source of neural stem-like cells for peripheral nerve regeneration.


Asunto(s)
Nervio Facial/fisiología , Encía/citología , Células Madre Mesenquimatosas/citología , Regeneración Nerviosa/fisiología , Cresta Neural/citología , Células-Madre Neurales/trasplante , Actomiosina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Biomarcadores/metabolismo , Células Cultivadas , Medios de Cultivo , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Nervio Facial/efectos de los fármacos , Femenino , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Laminas/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Miosina Tipo II/metabolismo , Células-Madre Neurales/efectos de los fármacos , Péptidos/farmacología , Fosfoproteínas/metabolismo , Ratas Sprague-Dawley , Transducción de Señal , Esferoides Celulares/citología , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Factores de Transcripción , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Señalizadoras YAP , Proteína de Unión al GTP rhoA/metabolismo
19.
Stem Cells ; 35(9): 2083-2094, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28699252

RESUMEN

Epithelial-mesenchymal transition (EMT), a biological process associated with cancer stem-like or cancer-initiating cell formation, contributes to the invasiveness, metastasis, drug resistance, and recurrence of the malignant tumors; it remains to be determined whether similar processes contribute to the pathogenesis and progression of ameloblastoma (AM), a benign but locally invasive odontogenic neoplasm. Here, we demonstrated that EMT- and stem cell-related genes were expressed in the epithelial islands of the most common histologic variant subtype, the follicular AM. Our results revealed elevated interleukin (IL)-6 signals that were differentially expressed in the stromal compartment of the follicular AM. To explore the stromal effect on tumor pathogenesis, we isolated and characterized both mesenchymal stromal cells (AM-MSCs) and epithelial cells (AM-EpiCs) from follicular AM and demonstrated that, in in vitro culture, AM-MSCs secreted a significantly higher level of IL-6 as compared to the counterpart AM-EpiCs. Furthermore, both in vitro and in vivo studies revealed that exogenous and AM-MSC-derived IL-6 induced the expression of EMT- and stem cell-related genes in AM-EpiCs, whereas such effects were significantly abrogated either by a specific inhibitor of STAT3 or ERK1/2, or by knockdown of Slug gene expression. These findings suggest that AM-MSC-derived IL-6 promotes tumor-stem like cell formation by inducing EMT process in AM-EpiCs through STAT3 and ERK1/2-mediated signaling pathways, implying a role in the etiology and progression of the benign but locally invasive neoplasm. Stem Cells 2017;35:2083-2094.


Asunto(s)
Ameloblastoma/metabolismo , Ameloblastoma/patología , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Interleucina-6/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ameloblastoma/genética , Animales , Carcinogénesis/patología , Separación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Desnudos , Transducción de Señal
20.
Stem Cells Transl Med ; 6(2): 458-470, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28191764

RESUMEN

Regeneration of peripheral nerve injury remains a major clinical challenge. Recently, mesenchymal stem cells (MSCs) have been considered as potential candidates for peripheral nerve regeneration; however, the underlying mechanisms remain elusive. Here, we show that human gingiva-derived MSCs (GMSCs) could be directly induced into multipotent NPCs (iNPCs) under minimally manipulated conditions without the introduction of exogenous genes. Using a crush-injury model of rat sciatic nerve, we demonstrate that GMSCs transplanted to the injury site could differentiate into neuronal cells, whereas iNPCs could differentiate into both neuronal and Schwann cells. After crush injury, iNPCs, compared with GMSCs, displayed superior therapeutic effects on axonal regeneration at both the injury site and the distal segment of the injured sciatic nerve. Mechanistically, transplantation of GMSCs, especially iNPCs, significantly attenuated injury-triggered increase in the expression of c-Jun, a transcription factor that functions as a major negative regulator of myelination and plays a central role in dedifferentiation/reprogramming of Schwann cells into a progenitor-like state. Meanwhile, our results also demonstrate that transplantation of GMSCs and iNPCs consistently increased the expression of Krox-20/EGR2, a transcription factor that governs the expression of myelin proteins and facilitates myelination. Altogether, our findings suggest that transplantation of GMSCs and iNPCs promotes peripheral nerve repair/regeneration, possibly by promoting remyelination of Schwann cells mediated via the regulation of the antagonistic myelination regulators, c-Jun and Krox-20/EGR2. Stem Cells Translational Medicine 2017;6:458-470.


Asunto(s)
Lesiones por Aplastamiento/cirugía , Encía/citología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Vaina de Mielina/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/trasplante , Remielinización , Células de Schwann/metabolismo , Nervio Ciático/cirugía , Neuropatía Ciática/cirugía , Animales , Diferenciación Celular , Separación Celular , Células Cultivadas , Lesiones por Aplastamiento/metabolismo , Lesiones por Aplastamiento/patología , Lesiones por Aplastamiento/fisiopatología , Modelos Animales de Enfermedad , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Humanos , Fenotipo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Ratas Sprague-Dawley , Células de Schwann/patología , Nervio Ciático/metabolismo , Nervio Ciático/patología , Nervio Ciático/fisiopatología , Neuropatía Ciática/metabolismo , Neuropatía Ciática/patología , Neuropatía Ciática/fisiopatología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...